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announcing its response to future information, the central bank can influence the expected
real interest rate faced by forward-looking consumers with different beliefs and thus affect
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in terms of cross-sectional efficiency.

Keywords: Monetary policy, imperfect information, consumer sentiment.

JEL Codes: E52, E32, D83.

∗MIT and NBER. Email: glorenzo@mit.edu. A previous version of this paper circulated with the title
“News Shocks and Optimal Monetary Policy.” I am grateful for comments from Kjetil Storesletten, three
anonymous referees, Marios Angeletos, Olivier Blanchard, Ricardo Caballero, Marvin Goodfriend, Veronica
Guerrieri, Alessandro Pavan, Iván Werning and seminar participants at the SED Meetings (Budapest), UQAM
(Montreal), the Kansas City Fed, MIT, UC San Diego, Chicago GSB, Northwestern, Cornell, U. of Texas at
Austin, and the AEA Meetings (San Francisco). Luigi Iovino provided excellent research assistance. I thank
the Federal Reserve Bank of Chicago for its hospitality during part of this project.



1 Introduction

Suppose a central bank observes an unexpected expansion in economic activity. This could

be due to a shift in fundamentals, say an aggregate productivity shock, or to a shift in public

beliefs with no actual change in the economy’s fundamentals. If the central bank could tell

apart the two shocks the optimal response would be simple: accommodate the first shock

and offset the second. In reality, however, central banks can rarely tell apart these shocks

when they hit the economy. What can the central bank do in this case? What is the optimal

monetary policy response? In this paper, I address these questions in the context of a model

with dispersed information, which allows for a micro-founded treatment of fundamental and

“sentiment” shocks.

The US experience in the second half of the 90s has fueled a lively debate on these issues.

The run up in asset prices has been taken by many as a sign of optimistic expectations about

widespread technological innovations. In this context, the advice given by different economists

has been strongly influenced by the assumptions made on the ability of the central bank to

identify the economy’s actual fundamentals. Some, e.g., Cecchetti et al. (2000) and Dupor

(2005), attribute to the central bank some form of superior information and advocate early

intervention to contain an expansion driven by incorrect beliefs. Others, e.g., Bernanke and

Gertler (2001), emphasize the uncertainty associated with the central bank’s decisions and

advocate sticking to a simple inflation targeting rule. In this paper, I explore the idea that,

even if the central bank does not have superior information, a policy rule can be designed to

take into account, and partially offset, aggregate mistakes by the private sector regarding the

economy’s fundamentals.

I consider an economy with heterogeneous agents and monopolistic competition, where ag-

gregate productivity is subject to unobservable shocks. Agents have access to a noisy public

signal of aggregate productivity, which summarizes public news about technological advances,

aggregate statistics, and information reflected in stock market prices and other financial vari-

ables. The error term in this signal introduces aggregate “noise shocks,” that is, shocks to

public beliefs which are uncorrelated with actual productivity shocks. In addition to the pub-

lic signal, agents have access to private information regarding the realized productivity in the

sector where they work. Due to cross-sectional heterogeneity, this information is not sufficient

to identify the value of the aggregate shock. Therefore, agents combine public and private

sources of information to forecast the aggregate behavior of the economy. The central bank
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has only access to public information.

In this environment, I obtain two sets of results. First, I show that the monetary authority,

using a policy rule which responds to past aggregate shocks, has the power to change the

relative response of the economy to productivity and noise shocks. Actually, there exists a

policy rule that perfectly replicates the full information level of aggregate activity. I dub this

policy “full aggregate stabilization.” Second, I derive the optimal policy rule and show that

full aggregate stabilization is typically suboptimal. In particular, if the coefficient of relative

risk aversion is greater or equal than one, at the optimal policy, aggregate output responds

less than proportionally to changes in aggregate fundamentals and responds positively to noise

shocks.

The fact that monetary policy can tackle the two shocks separately is due to two crucial

ingredients. First, agents are forward looking. Second, productivity shocks are unobservable

when they are realized, but become public knowledge in later periods. At that point, the central

bank can respond to them. By choosing an appropriate policy rule the monetary authority

can then alter the way in which agents respond to private and public information. Specifically,

the monetary authority can announce that it will increase its price level target following an

actual increase in aggregate productivity today. Under this policy, consumers observing an

increase in productivity in their own sector expect higher inflation than consumers who only

observe a positive public signal. Therefore, they expect a lower real interest rate and choose

to consume more. This makes consumption more responsive to private information and less to

public information and moderates the economy’s response to noise shocks. This result points

to an idea which applies more generally in models with dispersed information. If future policy

is set contingent on variables that are imperfectly observed today, this can change the agents’

reaction to different sources of information, and thus affect the equilibrium allocation.

In the model presented, the power of policy rules to shape the economy’s response to aggre-

gate shocks is surprisingly strong. Namely, by adopting the appropriate rule the central bank

can support an equilibrium where aggregate output responds one for one to fundamentals and

does not respond at all to noise in public news. However, such a policy is typically subopti-

mal for its undesirable consequences in terms of the cross-sectional allocation. In particular,

full aggregate stabilization generates an inefficient compression in the distribution of relative

prices.

The equilibrium under the optimal monetary policy achieves a constrained efficient allo-

cation. To define the appropriate benchmark for constrained efficiency, I consider a social
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planner who can dictate the way in which individual consumers respond to the information in

their hands, but cannot change their access to information, as in Hellwig (2005) and Angele-

tos and Pavan (2007). I then show that, in a general equilibrium environment with isoelastic

preferences and Gaussian shocks, a simple linear monetary policy rule, together with a non-

state-contingent production subsidy, are enough to eliminate all distortions due to dispersed

information and monopolistic competition. In particular, a policy rule that only depends on

aggregate variables is enough to induce agents to make an optimal use of public and private

information.1

Finally, I use the model to ask whether better public information can have destabilizing

effects on the economy and whether it can lead to social welfare losses. This connects the

paper to the growing debate on the social value of public information, started by Morris and

Shin (2002).2 I show that increasing the precision of the public signal increases the response

of aggregate output to noise shocks and can potentially increase output gap volatility (where

the gap is measured as the distance from the full information equilibrium). However, as agents

receive more precise information on average productivity, they also set relative prices that

are more responsive to individual productivity differences. Therefore, a more precise public

signal improves welfare by allowing a more efficient cross-sectional distribution of consumption

and labor effort. What is the total welfare effect of increasing the public signal’s precision?

If monetary policy is kept constant, then a more precise public signal can, for some set of

parameters, reduce total welfare. This provides an interesting general equilibrium counterpart

to Morris and Shin’s (2002) “anti-transparency” result. However, if monetary policy is chosen

optimally, then a more precise signal is always welfare improving. This follows the general

principle, pointed out in Angeletos and Pavan (2007), that more precise information is always

desirable when the equilibrium is constrained efficient.

A number of recent papers, starting with Woodford (2002) and Sims (2003), have revived

the study of monetary models with imperfect common knowledge, in the tradition of Phelps

(1969) and Lucas (1972).3 In particular, this paper is more closely related to Hellwig (2005)
1Angeletos and Pavan (2009) derive a similar result in the context of quadratic games. See Angeletos,

Lorenzoni, and Pavan (2008) for an application of the same principle to a model of investment and financial
markets.

2See Angeletos and Pavan (2007, 2009), Amador and Weill (2007), Hellwig and Veldkamp (2009). For
applications to the transparency of monetary policy, see Amato, Morris, and Shin (2002), Svensson (2005),
Hellwig (2005), Morris and Shin (2005).

3See also Moscarini (2004), Milani (2007), Nimark (2007), Bacchetta and Van Wincoop (2008), Luo (2008),
Maćkowiak and Wiederholt (2009). Mankiw and Reis (2002) and Reis (2006) explore the complementary idea
of lags in informational adjustment as a source of nominal rigidity.
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and Adam (2007), who study monetary policy in economies where money supply is imperfectly

observed by the public. In both papers consumers’ decisions are essentially static, as a cash-

in-advance constraint is present and always binding. Therefore, the forward-looking element

which is crucial in this paper, is absent in their models. In the earlier literature, King (1982)

was the first to recognize the power of policy rules in models with imperfect information. He

noticed that “prospective feedback actions” responding to “disturbances that are currently

imperfectly known by agents” can affect real outcomes (King, 1982, p. 248). The mechanism

in King (1982) is based on the fact that different policy rules change the informational content

of prices. As I will show below, that channel is absent in this paper. Here, policy rules matter

only because they affect agents’ incentives to respond to private and public signals. Angeletos

and La’O (2008) explore a general equilibrium model related to the one in this paper, but where

the precision of the information revealed by prices is endogenous, and focus on the distortions

generated by this endogeneity.

The existing literature on optimal monetary policy with uncertain fundamentals has fo-

cused on the case of common information in the private sector (Aoki, 2003, Orphanides, 2003,

Svensson and Woodford, 2003, 2004, and Reis, 2003). A distinctive feature of the model in

this paper is that private agents have access to superior information about fundamentals in

their local market but not in the aggregate. The presence of dispersed information generates a

novel tension between aggregate efficiency and cross-sectional efficiency in the design of optimal

policy.

There is a growing literature on expectation driven business cycles (e.g., Beaudry and

Portier, 2006, and Jaimovich and Rebelo, 2006). In particular, Lorenzoni (2009) shows that

noise shocks affecting the private sector’s expectations about aggregate productivity can gener-

ate realistic aggregate demand disturbances in a business cycle model with nominal rigidities.

However, the role of these noise shocks depend on the monetary policy response. This leads

to the question: are noise driven cycles merely a symptom of a suboptimal monetary regime

or do they survive under optimal monetary policy? The welfare analysis in this paper shows

that optimal policy does not eliminate the effect of noise shocks.4

Finally, from a methodological point of view, this paper is related to a set of papers who

exploit isoelastic preferences and Gaussian shocks to derive closed-form expressions for social
4Imperfect information is an important ingredient for this argument. Christiano, Motto, and Rostagno

(2006) analyze a full information model where business cycles are driven by news about future productivity. In
Appendix B of their paper, they show that optimal monetary policy essentially mutes the effects of those news
shocks.
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welfare in heterogeneous agent economies, e.g., Benabou (2002) and Heathcote, Storeslet-

ten, and Violante (2008). The main novelty here is the presence of differentiated goods and

consumer-specific consumption baskets.

The model is introduced in Section 2. In Section 3, I characterize stationary, linear rational

expectations equilibria. In Section 4, I show how the choice of the monetary policy rule affects

the equilibrium allocation. In Section 5, I derive the welfare implications of different policies,

characterize optimal monetary policy, and prove constrained efficiency. In Section 6, I study

the welfare effects of public information. Section 7 concludes. All the proofs not in the text

are in the appendix.

2 The Model

2.1 Setup

I consider a dynamic model of monopolistic competition à la Dixit-Stiglitz with heterogeneous

productivity shocks and imperfect information regarding aggregate shocks. Prices are set at

the beginning of each period, but are otherwise flexible.

There is a continuum of infinitely lived households uniformly distributed on [0, 1]. Each

household i is made of two agents: a consumer and a producer specialized in the production

of good i. Preferences are represented by the utility function

E

[ ∞∑

t=0

βtU (Cit, Nit)

]
,

with

U (Cit, Nit) =
1

1− γ
C1−γ

it − 1
1 + η

N1+η
it ,

where Cit is a consumption index and Nit is the labor effort of producer i.5 The consumption

index is given by

Cit =
(∫

Jit

C
σ−1

σ
ijt dj

) σ
σ−1

,

where Cijt denotes consumption of good j by consumer i in period t, and Jit ⊂ [0, 1] is a

random consumption basket, described in detail below. The elasticity of substitution between

goods, σ, is greater than 1.

The production function for good i is

Yit = AitNit.

5As usual, when γ = 1 the per-period utility function is U (Cit, Nit) = log Cit − (1/(1 + η))N1+η
it .
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Productivity is household-specific and labor is immobile across households. The productivity

parameters Ait are the fundamental source of uncertainty in the model. Let ait denote the

log of individual productivity, ait = log Ait. Throughout the paper, a lowercase variable will

denote the natural logarithm of the corresponding uppercase variable. Individual productivity

has an aggregate component at and an idiosyncratic component εit,

ait = at + εit,

with
∫ 1
0 εitdi = 0. Aggregate productivity at follows the AR1 process

at = ρat−1 + θt,

with ρ ∈ [0, 1].

At the beginning of period t, all households observe the value of aggregate productivity in

the previous period, at−1. Next, the shocks θt and εit are realized. Agents in household i do

not observe θt and εit separately, they only observe the sum of the two, that is, the individual

productivity innovation

xit = θt + εit.

Moreover, all agents observe a noisy public signal of the aggregate innovation

st = θt + et.

The random variables θt, εit and et are independent, serially uncorrelated, and normally dis-

tributed with zero mean and variances σ2
θ , σ2

ε , and σ2
e .

6 I assume throughout the paper that σ2
θ

and σ2
ε are strictly positive, and I study separately the cases σ2

e = 0 and σ2
e > 0, corresponding,

respectively, to full information and imperfect information on θt.

Summarizing, there are two aggregate shocks: the productivity shock θt and the noise

shock et. Both are unobservable during period t and are fully revealed at the beginning of

t + 1, when at is observed. The second shock is a source of correlated mistakes, as it induces

households to temporarily overstate or understate the current value of θt.

In the appendix, I give a full description of the matching process between consumers and

producers. Here, I summarize the properties of the consumption baskets that arise from the
6In the cases where γ 6= 1 and productivity is a random walk, ρ = 1, it is necessary to impose a bound on

σ2
θ to ensure that expected utility is finite, namely

σ2
θ < 2

(
γ + η

(1− γ) (1 + η)

)2

(− log β) .
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process. Each period, each consumer i is assigned an unobservable sampling shock vit. Then,

nature selects a random subset of goods Jit ⊂ [0, 1] of fixed measure, with the following

property: the distribution of productivity shocks εjt for the goods in Jit is normal with mean

vit and variance σ2
ε|v. The sampling shocks vit are normally distributed across consumers, with

zero mean and variance σ2
v . They are independent of all other shocks and satisfy

∫ 1
0 vitdi = 0.

To ensure consistency of the matching process, the variances σ2
v , σ

2
ε|v and σ2

ε have to satisfy

σ2
v + σ2

ε|v = σ2
ε . Therefore, the variance σ2

v is restricted to be in the interval
[
0, σ2

ε

]
. The

parameter χ = σ2
v/σ2

ε ∈ [0, 1] reflects the degree of heterogeneity in consumption baskets.

The limit cases χ = 0 and χ = 1 correspond, respectively, to the case where every consumer

consumes a representative sample of the goods in the economy and to the case where every

consumer consumes a sample of goods with identical productivity.

2.2 Trading, financial markets and monetary policy

The central bank acts as an account keeper for the agents in the economy. Each household

holds an account denominated in dollars, directly with the central bank. The account is debited

whenever the consumer makes a purchase and credited whenever the producer makes a sale.

The balance of household i at the beginning of the period is denoted by Bit. All households

begin with a zero balance at date 0. At the beginning of each period t, the bank sets the

(gross) nominal interest rate Rt, which will apply to end-of-period balances. Households are

allowed to hold negative balances at the end of the period and the same interest rate applies to

positive and negative balances. However, there is a lower bound on nominal balances, which

rules out Ponzi schemes.

To describe the trading environment, it is convenient to divide each period in three stages,

(t, 0) , (t, I) , and (t, II). In stage (t, 0), everybody observes at−1, the central bank sets Rt, and

households trade one-period state-contingent claims on a centralized financial market. These

claims will be paid in (t + 1, 0). In stages (t, I) and (t, II), the market for state-contingent

claims is closed and the only trades allowed are trades of goods for nominal balances. In

(t, I), all aggregate and individual shocks are realized, producer i observes st and xit, sets the

dollar price of good i, Pit, and stands ready to deliver any quantity of good i at that price.

In (t, II), consumer i observes the prices of the goods in his consumption basket, {Pjt}j∈Jit
,

chooses his consumption vector, {Cijt}j∈Jit
, and buys Cijt from each producer j ∈ Jit. In this

stage, consumer i and producer i are spatially separated, so the consumer does not observe the

current production of good i. Figure 1 summarizes the events taking place during period t.
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(t,0)

Everybody observes at-1

Central bank sets Rt

Agents trade state-

contingent claims

(t,I)

Household i observes

ittit

ttt

x

es

Sets price Pit

(t,II)

Household i observes price

vector
itJjjtP and

chooses consumption

vector
itJjijtC

(t+1,0)

State-contingent claims

are settled 

Figure 1: Timeline

Let Zit+1 (ωit) denote the state-contingent claims purchased by household i in (t, 0), where

ωit ≡ (εit, vit, θt, et). The price of these claims is denoted by Qt (ωit). The household balances

at the beginning of period t + 1 are then given by

Bit+1 = Rt

[
Bit −

∫

R4

Qt (ω̃it) Zit+1 (ω̃it) dω̃t + (1 + τ) PitYit −
∫

Jit

PjtCijtdj − Tt

]
+Zit+1 (ωit) ,

where τ is a proportional subsidy on sales and Tt is a lump-sum tax.

Since households are exposed to idiosyncratic risk, they will generally end up with different

end-of-period balances. However, since they face identical shocks ex ante, they can fully insure

by trading contingent claims in (t, 0). Therefore, beginning-of-period balances will be constant

and equal to 0 in equilibrium. This eliminates the wealth distribution from the state variables

of the problem, which greatly simplifies the analysis.7

Let me define aggregate indexes for nominal prices and real activity. For analytical conve-
7The use of this type of assumption to simplify the study of monetary models goes back to Lucas (1990).
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nience, I use simple geometric means,8

Pt ≡ exp
(∫ 1

0
log Pitdi

)
,

Ct ≡ exp
(∫ 1

0
log Citdi

)
.

The behavior of the monetary authority is described by a policy rule. In period (t, 0),

the central bank sets Rt based on the past realizations of the exogenous shocks θt and et,

and on the past realizations of Pt and Ct. The monetary policy rule is described by the map

Rt = R (ht, Pt−1, Ct−1, ..., P0, C0) , where ht denotes the vector of past aggregate shocks

ht ≡ (θt−1, et−1, θt−2, et−2, ..., θ0, e0) .

Allowing the central bank to condition Rt on the current public signal st would not alter any

of the results. The only other policy instrument available is the subsidy τ , which is financed

by the lump-sum tax Tt. The government runs a balanced budget so

Tt = τ

∫ 1

0
PitYitdi.

As usual in the literature, the subsidy τ will be used to eliminate the distortions due to

monopolistic competition.

2.3 Equilibrium definition

Household behavior is captured by three functions, Z, P and C. The first gives the optimal

holdings of state-contingent claims as a function of the initial balances Bit and of the vec-

tor of past aggregate shocks ht, that is, Zit+1 (ωit) = Z (ωit; Bit, ht). The second gives the

optimal price for household i, as a function of the same variables plus the current realiza-

tion of individual productivity and of the public signal, Pit = P (Bit, ht, st, xit). The third

gives optimal consumption as a function of the same variables plus the observed price vector,

Cit = C(Bit, ht, st, xit, {Pij}j∈Jit
). Before defining an equilibrium, I need to introduce two

other objects. Let D (.|ht) denote the distribution of nominal balances Bit across households,
8Alternative price and quantity indexes are

P o
t ≡

(∫ 1

0

P 1−σ
it di

) 1
1−σ

,

Y o
t ≡

∫ 1

0
PitYitdi

P o
t

.

All results stated for Pt and Ct hold for P o
t and Y o

t , modulo multiplicative constants.
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conditional on the history of past aggregate shocks ht. The price of a ωit-contingent claim in

period (t, 0), given the vector of past shocks ht, is given by Q (ωit; ht).

A symmetric rational expectations equilibrium under the policy rule R is given by an array

{Z,P, C,D,Q} that satisfies three conditions: optimality, market clearing, and consistency.

Optimality requires that the individual rules Z, P, and C are optimal for the individual house-

hold, taking as given: the exogenous law of motion for ht, the policy rule R, the prices Q,

and the fact that all other households follow Z, P, and C, and that their nominal balances are

distributed according to D. Market clearing requires that the goods markets and the market

for state-contingent claims clear for each ht. Consistency requires that the dynamics of the

distribution of nominal balances, described by D, are consistent with the individual decision

rules.

3 Linear equilibria

In this section, I characterize the equilibrium behavior of output and prices. Given the assump-

tion of complete financial markets in (t, 0), I can focus on equilibria where beginning-of-period

nominal balances are constant and equal to zero for all households. That is, the distribution

D (.|ht) is degenerate for all ht. Moreover, thanks to the assumption of separable, isoelastic

preferences and Gaussian shocks, it is possible to derive linear rational expectations equilibria

in closed form. In particular, I will consider equilibria where individual prices and consumption

levels are, in logs,

pit = φaat−1 + φsst + φxxit, (1)

cit = ψ0 + ψaat−1 + ψsst + ψxxit + ψxxit, (2)

where φ ≡{φa, φs, φx} and ψ ≡{ψ0, ψa, ψs, ψx, ψx} are vectors of constant coefficients to be

determined and xit is the average productivity innovation for the goods in the basket of con-

sumer i,

xit ≡
∫

Jit

xjtdj = θt + vit.

I will explain in a moment why this variable enters (2). Summing (1) and (2) across agents,

gives the aggregate price and quantity indexes

pt = φaat−1 + φθθt + φset, (3)

ct = ψ0 + ψaat−1 + ψθθt + ψset, (4)

where φθ ≡ φs + φx and ψθ ≡ ψs + ψx + ψx.
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3.1 Optimal prices and consumption

Consumer i faces the vector of log prices {pjt}j∈Jit . If all producers follow the linear rule (1),

these prices are normally distributed with mean φaat−1 + φsst + φxxit and variance φ2
xσ2

ε|v.

This follows from the assumption on consumption baskets and has two useful implications.

First, it is possible to derive an exact expression for the price index of consumer i which, in

logs, takes the form

pit = κp + pt + φxvit, (5)

where κp is a constant term derived explicitly in Lemma 5, in the appendix. Second, as the

consumer already knows at−1 and st, he can back out φxxit from the mean of this distribution

and this is a sufficient statistic for all the information on θt contained in the observed prices.

This proves the following lemma.

Lemma 1 If prices are given by (1), then the information of consumer i regarding the current

shock θt is summarized by the three independent signals st, xit and φxxit.

In a linear equilibrium it is possible to write the household’s first-order conditions for Pit

and Cit in a linear form. Detailed derivations and explicit expressions for the constant terms

κp and κc below, are in the proof of Proposition 1, in the appendix. Optimal price-setting

gives

pit = κp + Ei,(t,I) [pit + γcit + ηnit]− ait, (6)

where Ei,(t,I) [.] denotes the expectation of producer i at date (t, I). The expression on the

right-hand side of (6) captures the expected nominal marginal cost plus a constant mark-up.

The nominal marginal cost depends positively on the price index pit and on the marginal rate

of substitution between consumption and leisure γcit + ηnit, and negatively on productivity

ait. All the relevant information needed to compute the expectation in (6) is summarized by

at−1, st and xit, so Ei,(t,I) [.] can be replaced by E [.|at−1, st, xit].

The optimality condition for Cit takes the form

cit = κc + Ei,(t,II) [cit+1]− γ−1
(
rt − Ei,(t,II)

[
pit+1

]
+ pit

)
, (7)

where Ei,(t,II) [.] denotes the expectation of consumer i at date (t, II). Apart from the fact

that expectations and price indexes are consumer-specific, this is a standard Euler equa-

tion: current consumption depends positively on future expected consumption and nega-

tively on the expected real interest rate. Lemma 1 implies that Ei,(t,II) [.] can be replaced
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by E [.|at−1, st, xit, φxxit], confirming the initial conjecture that individual consumption is a

linear function of at−1, st, xit, and xit.

3.2 Policy rule and equilibrium

To find an equilibrium, I substitute (1) and (2) in the optimality conditions (6) and (7), and

obtain a system of equations in φ and ψ.9 This system does not determine φ and ψ uniquely.

In particular, for any choice of the parameter φa in R, there is a unique pair {φ, ψ} which is

consistent with individual optimality. To complete the equilibrium characterization and pin

down φa, I need to specify the monetary policy rule.

Consider an interest rate rule which targets the aggregate price level. The nominal interest

rate is set to

rt = ξ0 + ξaat−1 + ξp (pt−1 − p̂t−1) , (8)

where p̂t is the central bank’s target

p̂t = µaat−1 + µθθt + µeet. (9)

The parameters {ξ0, ξa, ξp} and {µa, µθ, µe} are chosen by the monetary authority. The central

bank’s behavior can be described as follows. At the beginning of period t, the monetary

authority observes at−1 and announces its current target p̂t for the price level. The target p̂t

has a forecastable, backward-looking component µaat−1, and a state-contingent part which is

allowed to respond to the current shocks θt and et. During trading, each agent sets his price

and consumption responding to the variables in his information set. At the beginning of period

t + 1, the central bank observes the realized price level pt and the realized shocks θt and et. If

pt deviated from target in period t, the next period nominal interest rate is adjusted according

to (8).

Given this policy rule, I can complete the equilibrium characterization and prove the exis-

tence of stationary linear equilibria. In particular, the next proposition shows that the choice

of µa by the monetary authority pins down φa and thus the equilibrium coefficients φ and ψ.

The choice of µa also pins down the remaining coefficients in the policy rule, except ξp. The

choice of this parameter does not affect the equilibrium allocation, it only affects the local

determinacy properties of the equilibrium. Notice that the proposition excludes one possible

value for µa, denoted by µ0
a, corresponding to the pathological case where the equilibrium

construction would give φx = 0. This case is discussed in the appendix.
9See (31)-(38) in the appendix.
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Proposition 1 For each µa ∈ R/
{
µ0

a

}
there exist a pair {φ, ψ} and a vector {ξ0, ξa, µθ, µe}

such that the prices and consumption levels (1)-(2) form a rational expectations equilibrium

under the policy rule (8)-(9), for any ξp ∈ R. If ξp > 1 the equilibrium is locally determinate.

The value of ψa is independent of the policy rule and equal to

ψa =
1 + η

γ + η
ρ.

In equilibrium, pt = p̂t and the interest rate is equal to

rt = ξ0 − (µa + γψa) (1− ρ) at−1.

4 The effects of monetary policy

Let me turn now to the effects of different policy rules on the equilibrium allocation. By

Proposition 1, the choice of the policy rule is summarized by the parameter µa, so, from

now on, I will simply refer to the policy rule µa. Proposition 1 shows that in equilibrium

the central bank always achieves its price level target. Therefore, by choosing µa the central

bank determines the aggregate response of prices to past realizations of aggregate productivity.

Since at−1 is common knowledge at time t, price setters can easily coordinate on setting prices

proportional to exp{µaat−1}.
The first question raised in the introduction can now be stated in formal terms. How does

the choice of µa affect the equilibrium response of aggregate activity to fundamental and noise

shocks, that is, the coefficients ψθ and ψs in (4)? More generally, how does the choice of µa

affect the vectors φ and ψ, which determine the cross-sectional allocation of goods and labor

effort across households? The rest of this section addresses these questions.

4.1 Full information

Let me begin with the case where households have full information on θt. This happens when

st is a noiseless signal, σ2
e = 0. In this case, households can perfectly forecast current aggregate

prices and consumption, pt and ct, by observing at−1 and st. Taking the expectation E[.|at−1, st]

on both sides of the optimal pricing condition (6) and omitting the constant terms, gives

pt = pt + γct + η (ct − at)− at.

This implies that aggregate consumption under full information, denoted by cfi
t , must satisfy

cfi
t = ψ0 +

1 + η

γ + η
at, (10)
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that is, ψa = ρ (1 + η) / (γ + η) and ψθ = (1 + η) / (γ + η). In the next proposition, I show

that the other coefficients affecting the equilibrium allocation are also uniquely determined and

independent of µa. This is a baseline neutrality result: under full information the equilibrium

allocation of consumption goods and labor effort is independent of the monetary policy rule.10

Proposition 2 When the signal st is perfectly informative, σ2
e = 0, the equilibrium allocation

is independent of the monetary policy rule µa.

4.2 Imperfect information

Let me turn now to the case of imperfect information, which arises when σ2
e is positive. In

this case, the choice of µa does affect the equilibrium allocation. To understand how monetary

policy operates, it is useful to start from a special case.

Consider the case where the intertemporal elasticity of substitution is γ = 1, the disutility

of effort is linear, η = 0, productivity is a random walk, ρ = 1, and there is no heterogeneity

in consumption baskets, χ = 0.11 In this case, the nominal interest rate is constant and the

Euler equation (7) becomes

cit = Ei,(t,II) [cit+1] + Ei,(t,II) [pt+1]− pt.

Given that future shocks have zero expected value at time t and ψa = 1, from Proposition

1, equation (2) implies that the expected future consumption on the right-hand side is equal

to Ei,(t,II) [ψ0 + at]. Moreover, under the price level target (9), the expected future price

level is equal to µaEi,(t,II) [at]. As I will show below, with homogeneous consumption bas-

kets, consumers can perfectly infer the value of θt from the observed values of pt and st, so

Ei,(t,II) [at] = at. Putting these results together, it follows that all consumers choose the same

consumption level

ct = ψ0 + (1 + µa) at − pt. (11)

At the price-setting stage, households still have imperfect information, given that they only

observe st and xit. Substituting for consumption, using (11), the optimal pricing condition (6)

becomes

pit = (1 + µa)E [at|st, xit]− ait.

10See McCallum (1979) for an early neutrality result in a model with pre-set prices.
11The following shows that the basic positive result of the paper can be derived with homogeneous consumption

baskets. However, Proposition 6 below shows that heterogeneous consumption baskets are necessary to obtain
interesting welfare trade-offs.
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The expectation on the right-hand side can be written as at−1 + βsst + βxxit, where βs and

βx are positive coefficients that satisfy βs + βx < 1.12 Aggregating across producers and

rearranging gives

pt = µaat−1 + (1 + µa) βsst + ((1 + µa)βx − 1) θt. (12)

This shows that pt and st fully reveal θt, except in the knife-edge case where µa = 1/βx − 1,

which I will disregard.

Finally, combining (11) and (12) gives an expression for equilibrium consumption in terms

of exogenous shocks

ct = ψ0 + at−1 + (1 + (1 + µa) (1− βs − βx)) θt − (1 + µa) βset. (13)

Therefore, the responses of aggregate consumption to fundamental and noise shock are ψθ =

1 + (1 + µa) (1− βs − βx) and ψs = − (1 + µa) βs and the choice of the policy rule µa is no

longer neutral. In particular, increasing µa increases the output response to fundamental

shocks and reduces the response to noise shocks.

To interpret this result, it is useful to look separately at consumers’ and price setters’

behavior. If the monetary authority increases µa, equation (11) shows that, for a given price

level pt, the response of consumer spending to θt increases. A larger value of µa implies that, if

a positive productivity shock materializes at date t, the central bank will target a higher price

level in the following period. This, translates in a lower expected real interest rate, leading to

higher current spending. On the other hand, the consumers’ response to a noise shock et, for

given pt, is zero irrespective of µa, given that consumers have perfect information on at and

place zero weight on the signal st.

Consider now the response of price setters. If the monetary authority chooses a larger

value for µa, price setters tend to set higher prices following a positive productivity shock θt

as they observe a positive st and, on average, a positive xit, and thus expect higher consumer

spending. However, due to imperfect information, they tend to underestimate the spending

increase. Therefore, their price increase is not enough to undo the direct effect on consumers’

demand, and, on net, real consumption goes up. Formally, this is captured by

∂ψθ

∂µa
= 1− βs − βx > 0.

On the other hand, following a positive noise shocks, price setters mistakenly expect an increase

in demand, following their observation of a positive st, and tend to raise prices. Consumers’
12See (29) in the appendix.
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demand, however, is unchanged. The net effect is a reduction in output, that is,

∂ψs

∂µa
= −βs < 0.

These results extend to the general case, as proved in the following proposition.

Proposition 3 When the signal st is noisy, σ2
e > 0, the equilibrium allocation depends on µa.

The coefficients {φ, ψ} are linear functions of the policy parameter µa, with

∂ψθ

∂µa
> 0,

∂ψs

∂µa
< 0,

∂φx

∂µa
> 0,

∂φs

∂µa
> 0.

The intuition for the special case extends to the general case. In particular, it is not

necessary for the result that consumers have perfect information on θt. What is crucial is

that price setters find it easier to forecast a demand increase driven by the public signal st,

relative to a demand increase driven by the consumers’ private signals xit and xit. When

µa is larger, consumers expect an increase in nominal prices at t + 1 following any positive

signal about future productivity, either public or private. If a positive fundamental shock hits,

consumers’ expectations are driven both by public and private signals. The producers can

perfectly forecast the demand increase associated to the public signal, but can only partially

foresee the demand increase due to private signals. Therefore, average current prices increase

less than expected future prices, the average expected real interest rate drops and real output

increases. If, instead, a positive noise shock hits, consumers’ expectations on future prices

are only driven, on average, by the public signal. The producers, observing the public signal,

adjust upwards their expectation of θt and forecast a demand increase driven by both public

and private signals. Therefore, current prices tend to increase more than expected future

prices, the average expected real interest rate increases and real output falls.

Three crucial ingredients are behind this result: dispersed information, forward-looking

agents, and a backward-looking policy based on the observed realization of past shocks. The

different information sets of consumers and price setters play a central role in the mechanism

described above. The presence of forward-looking agents is clearly needed so that announce-

ments about future policy affect current behavior. The backward-looking policy rule works

because it is based on past shock realizations which were not observed by the agents at the

time they hit. To clarify this point, notice that the results above would disappear if the central

bank based its intervention at t + 1 on any variable that is common knowledge at date t, for

example on st. Suppose, for example, that the backward-looking component of the nominal

spending target (9) took the form µsst−1 instead of µaat−1. Then, any adjustment in the
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backward-looking parameter µs would lead to identical and fully offsetting effects on current

prices and expected future prices, with no effects on the real allocation.13

4.3 Full aggregate stabilization

Going back to the special case introduced above, it is easy to show that monetary policy can

achieve the full information benchmark for aggregate activity by choosing the right value of

µa. Since γ = 1, aggregate consumption under full information is cfi
t = ψ0 + at, from (10).

Equation (13) shows that the central bank can induce the same aggregate outcome by setting

µa = −1. This monetary policy rule gives, at the same time, ψθ = 1 and ψs = 0.14 This may

seem the outcome of the special case considered and, in particular, of the fact that consumers

have full information. In fact, the result holds in general, as shown by the next proposition.

Proposition 4 There exists a monetary policy rule µfs
a which, together with the appropriate

subsidy τ fs, achieves full aggregate stabilization, that is, an equilibrium with ct = cfi
t .

To achieve the full information benchmark for ct, the central bank has to eliminate the

effect of noise shocks, setting ψs equal to zero, and ensure, at the same time, that the output

response to the fundamental shocks ψθ is equal to (1 + η) / (γ + η). Given that, by Proposition

3, there is a linear relation between µa and ψs and ∂ψs/∂µa 6= 0, it is always possible to find

a µa such that ψs is equal to zero.15 The surprising result is that the value of µa that sets ψs

to zero does, at the same time, set ψθ equal to (1 + η) / (γ + η). This result is an immediate

corollary of the following lemma.

Lemma 2 In any linear equilibrium, ψθ and ψs satisfy

ψθσ
2
θ + ψsσ

2
e =

1 + η

γ + η
σ2

θ .

Proof. Starting from the optimal pricing condition (6), take the conditional expecta-

tion E [.|at−1, st] on both sides. Using the law of iterated expectations and the fact that all

idiosyncratic shocks have zero mean, yields

E
[
ct − ψ0 − 1 + η

γ + η
at|at−1, st

]
= 0. (14)

13On the other hand, it is not crucial that the central bank observes θt perfectly in period t + 1. In fact, it
is possible to generalize the result above to the case where the central bank receives noisy information about θt

at t + 1, as long as this information is not in the agents’ information sets at time t.
14This does not ensure that ψ0 will also be the same. However, the subsidy τ can be adjusted to obtain the

desired value of ψ0.
15In the proof of Proposition 4, I check that µfs

a is different from µ0
a.
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Using (4) to substitute for ct, this equation boils down to

E [ψθθt + ψset|st] =
1 + η

γ + η
E [θt|st] .

Substituting for E [θt|st] = (σ2
θ/(σ2

θ + σ2
e))st and E [et|st] = (σ2

e/(σ2
θ + σ2

e))st, gives the desired

restriction.

The point of this lemma is that the output responses to the two shocks are tied together by

the price setters’ optimality condition. In particular, price setters cannot, based on the public

information in at−1 and st, expect their prices to deviate systematically from nominal marginal

costs plus a constant mark-up. This implies that, conditional on the same information, aggre-

gate consumption cannot be expected to deviate systematically from its full information level,

as shown by (14). In turn, this implies that when ψθ increases ψs must decrease. This also

implies that, if aggregate consumption moves one for one with ((1 + η) / (γ + η)) θt, then the

effect of the noise shock et must be zero.

To conclude this section, let me remark that the choice of µa also affect the sensitivity

of individual consumption and prices to idiosyncratic shocks. That is, the policy rule has

implications not only for aggregate responses, but also for the cross-sectional distribution of

consumption and relative prices. This observation will turn out to be crucial in evaluating the

welfare consequences of different monetary rules.

5 Optimal monetary policy

5.1 Welfare

I now turn to welfare analysis and to the characterization of optimal monetary policy. The

consumption of good j by consumer i is given by

Cijt = P−σ
jt P

σ
itCit. (15)

In a linear equilibrium, using (1), (2) and (5), this expression becomes

Cijt = exp {ψ0 + σκp + ψaat−1 + ψsst + ψxxit + ψxxit − σφx (xjt − xit)} .

The equilibrium labor effort of producer i is given by the market clearing condition

Nit =

∫
j∈J̃it

Cjitdj

Ait
, (16)

where J̃it denotes the set of consumers who buy good i at time t. Using these expressions and

exploiting the normality of the shocks, it is possible to derive analytically the expected utility

of a representative household at time 0, as shown in the following lemma.
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Lemma 3 Take any monetary policy µa ∈ R/µ0
a and consider the associated linear equilib-

rium. Assume the subsidy τ is chosen optimally. Then the expected utility of a representative

household is given by

E

[ ∞∑

t=0

βtU (Cit, Nit)

]
=

1
1− γ

W0e
(1−γ) 1+η

γ+η
w(µa)

,

if γ 6= 1, and by

E

[ ∞∑

t=0

βtU (Cit, Nit)

]
= w0 +

1
1− β

w(µa),

if γ = 1. W0 and w0 are constant terms independent of µa, W0 is positive, and w(.) is a known

quadratic function, which depends on the model’s parameters.

The function w(µa) can be used to evaluate the welfare effects of different policies in terms

of equivalent consumption changes. Suppose I want to compare the policies µ′a and µ′′a by

finding the ∆ such that

E

[ ∞∑

t=0

βtU
(
(1 + ∆)C ′

it, N
′
it

)
]

= E

[ ∞∑

t=0

βtU
(
C ′′

it, N
′′
it

)
]

,

where C ′
it, N

′
it and C ′′

it, N
′′
it are the corresponding equilibrium allocations. The value of ∆

represents the proportional increase in lifetime consumption which is equivalent to a policy

change from µ′a to µ′′a. The following lemma shows that w (µ′′a)− w (µ′a) provides a first-order

approximation for ∆.16

Lemma 4 Let ∆(µ′a, µ′′a) be the welfare change associated to the policy change from µ′a to µ′′a,

measured in terms of equivalent proportional change in lifetime consumption. The function

∆(., .) satisfies
d∆(µa, µa + u)

du

∣∣∣∣
u=0

= w′ (µa) .

5.2 Constrained efficiency

To characterize optimal monetary policy, I will show that it achieves an appropriately defined

social optimum. I consider a planner who can choose the consumption and labor effort levels

Cijt and Nit facing only two constraints: the resource constraint (16) and the informational

constraint that Cijt be measurable with respect to at−1, st, xit, xit and xjt. This requires that,

when selecting the consumption basket of consumer i at time t, the planner can only use the
16I am grateful to Kjetil Storesletten for suggesting this result.
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information available to the same consumer in the market economy. Specifically, I allow the

planner to use all the information available to consumers in linear equilibria with φx 6= 0.

Given that the only information on past shocks which is useful to the planner at time t is

captured by at−1, I omit conditioning Cijt on more detailed information on past shocks. An

allocation that solves the planner problem is said to be “constrained efficient.”

The crucial assumption here is that the planner can determine how consumers respond to

various sources of information, but cannot change this information. This notion of constrained

efficiency is developed and analyzed in a broad class of quadratic games in Angeletos and

Pavan (2007, 2009). Here, I can apply it in a general equilibrium environment, even though

agents extract information from prices, because the matching environment is such that this

information is essentially exogenous. The following result shows that, with the right choice of

µa and τ , the equilibrium found in Proposition 1 is constrained efficient.

Proposition 5 There exist a monetary policy µ∗a and a subsidy τ∗ such that the associated

stationary linear equilibrium is constrained efficient.

This proposition shows that a simple backward-looking policy rule, which is only contingent

on aggregate variables, is sufficient to induce agents to make the best possible use of the public

and private information available.

All linear equilibrium allocations are feasible for the planner, as they satisfy both the

resource constraint and the measurability constraint. Therefore, an immediate corollary of

Proposition 5 is that µ∗a maximizes w(µa). On the other hand, the set of feasible allocations

for the planner is larger than the set of linear equilibrium allocations, because in the planner’s

problem Cijt is allowed to be any function, possibly non-linear, of at−1, st, xit, xit and xjt.

5.3 Optimal accommodation of noise shocks

Having obtained a general characterization of optimal monetary policy, I can turn to more

specific questions: what is the economy’s response to the various shocks at the optimal mon-

etary policy? In particular, is full aggregate stabilization optimal? That is, should monetary

policy completely eliminate the aggregate disturbances due to noise shocks, setting ψs = 0?

The next proposition shows that, typically, full aggregate stabilization is suboptimal.

Proposition 6 Suppose the signal st is noisy, σ2
e > 0, and the model parameters satisfy η > 0

and χ ∈ (0, 1), then full aggregate stabilization is suboptimal. If σγ > 1 then µ∗a < µfs
a and, at
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the optimal policy, aggregate consumption is less responsive to fundamental shocks than under

full information and noise shocks have a positive effect on aggregate consumption:

ψ∗θ <
1 + η

γ + η
, ψ∗s > 0.

If σγ < 1 the opposite inequalities apply. Full stabilization is optimal if at least one of the

following conditions holds: η = 0, χ = 0, χ = 1, σγ = 1.

To interpret this result, I use the following expression for the welfare index w(µa) defined

in Lemma 3,

w = −1
2

(γ + η)E[(ct − cfi
t )2] +

+
1
2

(1− γ)
∫ 1

0
(cit − ct)

2 di− 1
2

(1 + η)
∫ 1

0
(nit − nt)

2 di + (ct − at − nt) , (17)

where nt is the employment index nt ≡
∫ 1
0 nitdi. This expression is derived in the appendix.

The first term in (17) captures the welfare effects of aggregate volatility. In particular, it

shows that social welfare is negatively related to the volatility of the “output gap” measure

ct − cfi
t , which captures the distance between ct and the full-information benchmark analyzed

in Section 4.1. A policy of full aggregate stabilization sets this expression to zero. However,

the remaining terms are also relevant to evaluate social welfare. Once they are taken into

account, full aggregate stabilization is no longer desirable. These terms capture welfare effects

associated to the cross-sectional allocation of consumption goods and labor effort, conditional

on the aggregate shocks θt and et. Let me analyze them in order.

The second and third term in (17) capture the effect of the idiosyncratic variances of cit

and nit. Since cit and nit are the logs of the original variables, these expressions capture both

level and volatility effects. In particular, focusing on the first one, when the distribution of cit

is more dispersed, Cit is, on average, higher, given that

E[Cit|at−1, θt, et] = exp
{

ct +
1
2

∫ 1

0
(cit − ct)

2 di

}
,

but is also more volatile as

V ar [Cit|at−1, θt, et] = exp
{

1
2

∫ 1

0
(cit − ct)

2 di

}
.

This explains why the term
∫ 1
0 (cit − ct)

2 di is multiplied by 1 − γ. When the coefficient of

relative risk aversion γ is greater than 1, agents care more about the volatility effect than

about the level effect. In this case, an increase in the dispersion of cit reduces consumers’
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expected utility. The opposite happens when γ is smaller than 1. A similar argument applies

to the third term in (17), although there both the level and the volatility effects reduce expected

utility, given that the disutility of effort is a convex function.

The last term, ct − at − nt, reflects the effect of monetary policy on the economy’s average

productivity in consumption terms. Due to the heterogeneity in consumption baskets, a given

average level of labor effort, with given productivities, translates into different levels of the

average consumption index ct depending on the distribution of quantities across consumers

and producers. To further analyze this term, I use the following decomposition, which is

derived in the appendix,

ct−at−nt = −1
2
V ar[cjt+σpjt|j ∈ J̃it, at−1, θt, et]+

σ (σ − 1)
2

V ar [pjt|j ∈ Jit, at−1, θt, et] . (18)

To interpret the first term, notice that cjt + σpjt is the intercept, in logs, of the demand

for good i by consumer j, given by (15). Fixing average log consumption, satisfying a more

dispersed log demand requires more effort by producer i. To interpret the second term, notice

that consumers like price dispersion in their consumption basket, given that when prices are

more variable they can reallocate expenditure from more expensive goods to cheaper ones.

Therefore, a given average effort by the producers translates into higher consumption indexes

when relative prices are more dispersed.17 Summing up, when demand dispersion is lower and

price dispersion higher, a given average effort nt generates higher average consumption ct.

5.4 A numerical example

To illustrate the various welfare effects just described, I turn to a numerical example. The

parameters for the example are in Table 1. The coefficient of relative risk aversion γ is set to

1. The values for σ and η are chosen in the range of values commonly used in DSGE models

with sticky prices. The values for the variances σ2
θ , σ

2
ε and σ2

e are set at 1. The variance of the

sampling shocks σ2
v must then be in [0, 1] and I pick the intermediate value σ2

v = 1/2.

Figure 2 illustrates how µa affects the various terms in (17) and compares the optimal

policy µ∗a with the full-stabilization policy µfs
a . Given that γσ > 1, the optimal policy is to the

left of the full-stabilization policy, by Proposition 6. Using Lemma 4, it is possible to interpret

the welfare effects in terms of equivalent consumption changes.
17Since prices are expressed in logs, an increase in the volatility of pjt has both a level and a volatility effect.

Given that σ > 1, the second always dominates. The fact that relative price dispersion increases welfare is
not inconsistent with approximate welfare expressions in standard new Keynesian models, where relative price
dispersion enters with a minus sign. The price dispersion term in those expressions summarizes all the cross
sectional effects discussed here, including, in particular, the dispersion of labor supply. Due to heterogenous
productivity, this simplification is not possible in the model presented here.
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Figure 2: Decomposing the welfare effects of monetary policy.
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γ 1 η 2
σ 7
σ2

θ 1 σ2
ε 1

σ2
e 1 σ2

v 0.5

Table 1: Parameters for the numerical example.

Panel (a) plots the relation between µa and the first term in (17), capturing the negative

effect of aggregate volatility. Not surprisingly, the maximum of this function is reached at

the full-stabilization policy. Focusing purely on the aggregate output gap, the social planner

finds that moving from µfs
a to µ∗a leads to an approximate welfare loss of 1% in equivalent

consumption. However, when all cross-sectional terms are taken into account, the same policy

change generates, in fact, a welfare gain of about 3%. Although this is just an example, these

numbers show that disregarding the cross-sectional implications of monetary policy can lead

to serious welfare miscalculations.

Let me now examine the cross-sectional terms in more detail. With γ = 1, the second term

in (17) is always zero, so this term is not reported in the figure. Panel (b) plots the third term,

the negative effect due to the dispersion in labor supply. Panels (c) and (d) plot separately the

two components of the productivity term ct − at − nt, derived in equation (18): the demand

dispersion term in panel (c) and the price dispersion term in panel (d).

Notice the crucial role of the price dispersion term. Moving from µfs
a to µ∗a leads to a

welfare loss of about 9% in terms of labor supply dispersion and to a similar loss in terms of

demand dispersion, as shown in panels (b) and (c). The welfare gain due to increased price

dispersion is very large, about 22%, and more than compensates for these losses and for the

aggregate volatility loss in panel (a). Let me provide some intuition for the mechanism behind

these effects.

At the optimal equilibrium, φx is negative: producers with higher productivity set lower

prices to induce consumers to buy more of their goods.18 By increasing µa, the central bank

induces household consumption to be more responsive to the private productivity signal xit.19

This implies that more productive households face lower marginal utility of consumption, and,

at the price-setting stage, have weaker incentives to lower prices. In formal terms, ∂φx/∂µa > 0,

as shown in Proposition 3. Therefore, increasing µa in a neighborhood of µ∗a, reduces |φx|, the

absolute response of prices to individual productivity shocks and causes relative prices to be
18See the proof of Proposition 5.
19Equation (45), in the appendix, implies ∂ψx/∂µa > 0.
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less responsive to individual productivity differences. This leads to a more compressed price

distribution and to the welfare loss depicted in panel (d).

Under the parametric assumptions made, this mechanism also leads to a reduction in labor

supply dispersion and in demand dispersion, as shown in panels (b) and (c). In the example,

at µ∗a, individual labor supply is increasing in individual productivity. When relative prices

become less responsive to individual productivity, the relation between productivity and labor

supply becomes flatter, reducing the cross-sectional dispersion in labor supply. Finally, an

increase in µa leads to a compression in the distribution of demand indexes faced by a given

producer, due to the reduced dispersion in the price indexes pjt.

Summing up, if the central bank wants to reach full stabilization it has to induce households

to rely more heavily on their private productivity signals xit when making their consumption

decisions. By inducing them to concentrate on private signals the central bank can mute

the effect of public noise. However, in doing so, the central bank reduces the sensitivity of

individual prices to productivity, generating an inefficiently compressed distribution of relative

prices.

5.5 The role of strategic complementarity in pricing

Proposition 6 identifies a set of special cases where full stabilization is optimal. An especially

interesting case is η = 0. In this case, there is no strategic complementarity in price setting.

Substituting the consumer’s Euler equation (7) on the right-hand side of the pricing condition

(6) and using the law of iterated expectations, after some manipulations, yields

pit = µaat−1 + (µa + ρ)Ei,(t,I) [θt]− xit. (19)

This shows that in this case prices only depend on the agents’ first-order expectations of θt.

The analysis in Section 4.2 shows that even in this simple case an interesting form of non-

neutrality is present, because of asymmetric information between price setters and consumers.

However, in this case there is no significant interaction among price setters. That is, the

strategic complementarity emphasized in Woodford (2002) and Hellwig (2005) is completely

muted.

In this case, it can be shown that the optimal monetary policy is µ∗a = −ρ. The consumer’s

Euler equation implies that under this policy the marginal utility of expenditure P
−1
it C−γ

it is per-

fectly equalized across households. At the same time, by (19), relative prices are perfectly pro-

portional to individual productivities. These relative prices achieve an efficient cross-sectional
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allocation of consumption and labor effort. That is, in this economy there is no tension between

aggregate and cross-sectional efficiency. Actually, it is possible to prove that, at the optimal

monetary policy, this economy achieves the full-information first-best allocation.20

When η 6= 0, producers must forecast their sales to set optimal prices and these sales depend

on the prices set by other producers. Now the pricing decisions of the producers are fully

interdependent. On the planner’s front, when η 6= 0, it is necessary to use individual estimates

of θt when setting efficient “shadow” prices. In this case, the optimal policy can no longer

achieve the unconstrained first-best. Therefore, the presence of strategic complementarity in

pricing is tightly connected to the presence of an interesting trade-off between aggregate and

cross-sectional efficiency.

6 The welfare effects of public information

So far, I have assumed that the source of public information, the signal st, is exogenous and

outside the control of the monetary authority. Suppose now that the central bank has some

control on the information received by the private sector. For example, it can decide whether

or not to systematically release some aggregate statistics, which would increase the precision

of public information. What are the welfare effects of this decision? To address this question

I look at the effects of changing the precision of the public signal, defined as πs ≡ 1/σ2
e , on

total welfare. This exercise connects this paper to the growing literature on the welfare effects

of public information, discussed in the introduction. I consider two possible versions of this

exercise. First, I assume that when πs changes the monetary policy rule µa is kept constant,

while the subsidy τ is adjusted to its new optimal level. Second, I assume that for each value

of πs both µa and τ are chosen optimally.

Suppose the economy’s parameters are those in Table 1 and suppose that µa is fixed at its

optimal value for πs = 1. Figure 3 shows the effect of changing πs on welfare. The solid line

represents total welfare, measured by w in (17). The dashed line represents the relation between

µa and the first component in (17), which captures the welfare cost of aggregate volatility. To

improve readability, welfare measures are expressed in terms of differences from their value at

πs = 1 and a log scale is used for πs. Let me begin by discussing the second relation. When

the signal st is very imprecise agents disregard it and the coefficient ψs goes to zero. When the
20To prove this, follow the same steps as in the proof of Proposition 5, but allow the consumption rule to

be contingent on θt. Then, it is possible to show that the optimal allocation is supported by the equilibrium
described above.
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Figure 3: Welfare effects of changing the public signal precision, η = 2.

signal becomes more precise, agents rely more on the public signal. So, although the volatility

of et is falling, increasing ψs can lead to an increase in aggregate volatility. In the example

considered, this happens whenever log πs is below 1.8. In that region, more precise public

information has a destabilizing effect on the economy. Eventually, when the signal precision is

sufficiently large, the economy converges towards the full information equilibrium and output

gap volatility goes to zero. Therefore, there is a non-monotone relation between µa and the

cost of aggregate volatility. However, this only captures the first piece of the welfare function

(17). The solid line in Figure 3 shows that, when all the other pieces are taken into account,

welfare is increasing everywhere in πs. When the public signal is very imprecise, agents have

to use their own individual productivity to estimate aggregate productivity. This leads to less

precise estimates of idiosyncratic productivity, leading to a compressed distribution of relative

prices. An increase in the signal precision helps producers set relative prices that reflect more

closely the underlying productivity differentials. The associated gain in allocative efficiency

is always positive and more than compensates for the potential welfare losses due to higher

aggregate volatility.

The notion that more precise information about aggregate variables has important cross-

sectional implications is also highlighted in Hellwig (2005). In that paper, agents face un-

certainty about monetary policy shocks and there are no idiosyncratic productivity shocks.

Therefore, the cross-sectional benefits of increased transparency are reflected in a reduction in
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Figure 4: Welfare effects of changing the public signal precision, η = 5.

price dispersion. Here, instead, more precise public information tends to generate higher price

dispersion. However, the underlying principle is the same: in both cases a more precise public

signal leads to relative prices more in line with productivity differentials.

Let me now consider a more intriguing example, where social welfare can be decreasing

in πs. In Figure 4, I plot the relation between πs and w for an economy identical to the one

above, except that the inverse Frisch elasticity of labor supply is set to a much higher value,

η = 5. When η is larger, the costs of aggregate volatility are bigger, and, it is possible to

have a non-monotone relationship between πs and total welfare, as shown by the solid line in

Figure 4. For example, when log π increases from 0 to 1, social welfare falls by about 0.6%

in consumption equivalent terms. This result mirrors the result obtained by Morris and Shin

(2002) in a simple quadratic game. As stressed by Angeletos and Pavan (2007), their result

depends crucially on the form of the agents’ objective function and on the nature of their

strategic interaction. In my model, the possibility of welfare-decreasing public information

depends on the balance between aggregate and cross-sectional effects. When η is large the

negative welfare effects of aggregate volatility become a dominant concern, and increases in

public signal precision can be undesirable.

This result disappears when I allow the central bank to adjust the monetary policy rule

to changes in the informational environment. In this case, more precise public information

is unambiguously good for social welfare. This is illustrated by the dashed line in Figure 4,
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which shows the relation between πs and w, when µa is chosen optimally. By Proposition

5, the optimal µa induces agents to use information in a socially optimal way. Therefore, at

the optimal policy, better information always leads to higher social welfare. The underlying

argument is analogous to that used by Angeletos and Pavan (2007) in the context of quadratic

coordination games: when the equilibrium is constrained efficient more precise information is

always welfare improving.

Proposition 7 If µa is kept fixed, an increase in πs can lead to a welfare gain or to a welfare

loss, depending on the model’s parameters. If µa is chosen optimally, increasing πs is always

(weakly) welfare improving.

7 Conclusions

In this paper, I have explored the role of monetary policy rules in an economy where information

about macroeconomic fundamentals is dispersed across agents. The emphasis has been on the

ability of the policy rule to shape the economy’s response to different shocks. In particular, the

monetary authority is able to reduce the economy’s response to noise shocks by manipulating

agents’ expectations about the real interest rate. The principle behind this result goes beyond

the specific model used in this paper: by announcing that policy actions will respond to

future information, the monetary authority can affect differently agents with different pieces of

information. In this way, it can change the aggregate response to fundamental and noise shocks

even if it has no informational advantage over the private sector. A second general lesson that

comes from the model is that, in the presence of heterogeneity and dispersed information, the

policy maker will typically face a trade-off between aggregate and cross-sectional efficiency.

Inducing agents to be more responsive to perfectly observed local information can lead to

aggregate outcomes that are less sensitive to public noise shocks, but it can also lead to a

worse cross-sectional allocation.

The optimal policy rule used in this paper can be implemented both under commitment

and under discretion. To offset an expansion driven by optimistic beliefs, the central bank

announces that it will make the realized real interest rate higher if good fundamentals do not

materialize. With flexible prices, this effect is achieved with a downward jump in the price level

between t and t+1. Since at is common knowledge at time t+1, this jump only affects nominal

variables, but has no consequences on the real allocation in that period. Therefore, the central

bank has no incentive to deviate ex post from its announced policy. In economies with sluggish
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price adjustment, a similar effect could be obtained by a combination of a price level change

and an increase in nominal interest rates. In that case, however, commitment problems are

likely to arise, because both type of interventions have additional distortionary consequences

ex post. The study of models where lack of commitment interferes with the central bank’s

ability to deal with informational shocks is an interesting area for future research.

A strong simplifying assumption in the model is that the only financial assets traded in

subperiods (t, I) and (t, II) are non-state-contingent claims on dollars at (t+1, 0). Introducing

a richer set of traded financial assets would increase the number of price signals available to

both consumers and the monetary authority. In a simple environment with only two aggregate

shocks, this will easily lead to a fully revealing equilibrium. Therefore, to fruitfully extend

the analysis in this direction requires the introduction of a larger number of shocks, making

financial prices noisy indicators of the economy’s fundamentals.

Finally, in the model presented, the information available to the central bank is independent

of the policy rule, as all aggregate shocks are fully revealed after one period. Morris and Shin

(2005) have recently argued that stabilization policies may have adverse effects, if they reduce

the informational content of prices for policy makers. A natural extension of the model in this

paper would be to enrich the informational dynamics, making the information available to the

central bank endogenous and sensitive to policy.
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8 Appendix

8.1 Random consumption baskets

At the beginning of each period, household i is assigned two random variables, εit and vit,

independently drawn from normal distributions with mean zero and variances, respectively,

σ2
ε and σ2

v . These variables are not observed by the household. The first random variable

represents the idiosyncratic productivity shock, the second is the sampling shock that will

determine the sample of firms visited by consumer i. Consumers and producers are then

randomly matched so that: (i) each consumer meets a fixed mass M < 1 of producers and

each producer a fixed mass M of consumers; and (ii) the mass of matches between producers

with productivity shock ε and consumers with sampling shock v is Mφ (ε, v), where φ (ε, v) is

the bivariate normal density with covariance matrix
[

σ2
ε
√

χσvσε

. σ2
v

]

and χ is a parameter in [0, 1]. Since the variable vit has no direct effect on payoffs, its variance

is normalized and set to σ2
v = χσ2

ε . Let Jit denote the set of producers met by consumer i and

J̃it the set of consumers met by producer i. Given the matching process above the following

properties follow. The distribution {εjt : j ∈ Jit} is a normal N(vit, σ
2
ε|v) with σ2

ε|v = (1− χ) σ2
ε .

The distribution {vjt : j ∈ J̃it} is a normal N(χεit, σ
2
v|ε), with σ2

v|ε = χ(1− χ)σ2
ε .

8.2 Proof of Proposition 1

The proof is split in steps. First, I derive price and demand indexes that apply in the linear

equilibrium conjectured. Second, I use them to setup the individual optimization problem and

derive necessary conditions for individual optimality. Third, I use these conditions to charac-

terize a linear equilibrium. Fourth, I show how choosing µa uniquely pins down the coefficients

{φ, ψ} and derive the remaining coefficients of the monetary policy rule that implements {φ, ψ}.
The proof of local determinacy is in the supplementary material.

8.2.1 Price and demand indexes

Individual optimization implies that the consumption of good j by consumer i is Cijt =

P−σ
jt P

σ
itCit, where P it is the price index

P it =
(∫

j∈Jit

P 1−σ
jt dj

) 1
1−σ

.

31



The demand for good i is then obtained by integrating the individual demands over J̃it (the set

of consumers who buy good i at time t). This gives Yit = DitP
−σ
it , where Dit is the “demand

index”

Dit =
∫

j∈J̃it

P
σ
jtCjtdj.

The next lemma derives explicit expressions for price and demand indexes in a linear equilib-

rium.

Lemma 5 If individual prices and quantities are given by (1) and (2) then the price index for

consumer i and the demand index for producer i are equal to (5) and

dit = κd + ct + σpt + (ψx + σφx) χεit, (20)

where κp and κd are constant terms equal to

κp =
1− σ

2
φ2

xσ2
ε|v, (21)

κd =
1
2
ψ2

xσ2
ε +

1
2

(ψx + σφx)2 σ2
v|ε + σ

1− σ

2
φ2

xσ2
ε|v. (22)

Proof. Recall that the shocks εjt for j ∈ Jit have a normal distribution N(vit, σ
2
ε|v). Then,

given (1), the prices observed by consumer i are log-normally distributed, with mean pt +φxvit

and variance φ2
xσ2

ε|v, therefore,

∫

j∈Jit

P 1−σ
jt dj = e

(1−σ)(pt+φxvit)+
(1−σ)2

2
φ2

xσ2
ε|v .

Taking both sides to the power 1/ (1− σ) gives the desired expression for P it, from which

(5) and (21) follow immediately. Using this result and expression (2), the demand index for

producer i can be written as

Dit =
∫

j∈J̃it

CjtP
σ
jtdj = ect+σpteσκp

∫

j∈J̃it

eψxεjt+ψxvjteσφxvjtdj.

Recall that the distribution {vjt : j ∈ J̃it} is a normal N(χεit, σ
2
v|ε), and εjt and vjt are

independent. It follows that
∫

j∈J̃it

eψxεjt+ψxvjt+σφxvjtdj = e
1
2
ψ2

xσ2
ε +(ψx+σφx)χεit+

1
2
(ψx+σφx)2σ2

v|ε .

Substituting in the previous expression gives (20) and (22).
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8.2.2 Individual optimization

Consider an individual household, who expects all other households to follow (1)-(2) and the

central bank to follow (8)-(9). In period (t, 0), before all current shocks are realized, the

household’s expectations about the current and future path of prices, quantities and interest

rates depend only on at−1 and Rt. Moreover, the only relevant individual state variable is given

by the household nominal balances Bit. Therefore, I can analyze the household’s problem using

the Bellman equation

V (Bit, at−1, Rt) = max
{Zit+1(.)},{Bit+1(.)},
{P (.,.)},{C(.,.,.)}

Et [U (Cit, Nit) + βV (Bit+1, at, Rt+1)]

subject to the constraints

Bit+1 (ωit) = Rt

[
Bit −

∫
q (ω̃it) Zit+1 (ω̃it) dω̃it + (1 + τ) PitYit − P itCit − Tt

]
+ Zit+1 (ωit) ,

Yit = DitP
−σ
it , Yit = AitNit, Pit = P (at−1, st, xit) , Cit = C (at−1, st, xit, xit) ,

and the law of motions for at and Rt+1. Et [.] represents expectations formed at (t, 0) and, in

the equilibrium conjectured, it can be replaced by E [.|at−1]. This problem gives the following

optimality conditions for prices and consumption

Ei,(t,I)

[
(1 + τ)P

−1
it C−γ

it Yit − σ

σ − 1
A−1

it Nη
itP

−1
it Yit

]
= 0, (23)

Ei,(t,II)

[
P
−1
it C−γ

it − βRtP
−1
it+1C

−γ
it+1

]
= 0, (24)

where Ei,(t,I) [.] and Ei,(t,II) [.] denote the expectations of agent i at (t, I) and (t, II). Given

the conjectured equilibrium and, given Lemma 1, they are equal to E [.|at−1, st, xit] and

E [.|at−1, st, xit, φxxit]. By Lemma 5 all the random variables in the expressions above are log-

normal, including the output and labor supply of producer i which are equal to Yit = DitP
−σ
it

and Nit = A−1
it Yit. Rearranging and substituting in (23) and (24) gives (6) and (7) in the text,

which I report here in extended form,

pit = κp + η
(
Ei,(t,I) [dit]− σpit − ait

)
+ Ei,(t,I) [pit + γcit]− ait, (25)

pit + γcit = γκc − rt + Ei,(t,II)

[
pit+1 + γcit+1

]
. (26)

The constant terms κp and κc are equal to

κp = H (ψs, ψx, ψx, φx)− log (1 + τ) , (27)

κc = G (ψs, ψx, ψx, φx) , (28)

and H and G are known quadratic functions of ψs, ψx, ψx and φx.
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8.2.3 Equilibrium characterization

To check for individual optimality, I will substitute the conjectures made for individual behav-

ior, (1) and (2), in the optimality conditions (25) and (26) and obtain a set of restrictions on

{φ, ψ}. Notice that all the shocks are i.i.d. so the expected value of all future shocks is zero.

Let me assume for now that φx 6= 0, so that E [.|st, xit, xit] can replace E [.|st, xit, φxxit]. Let

βs, βx and δs, δx, δx be coefficients such that E [θt|st, xit] = βsst + βxxit and E [θt|st, xit, xit] =

δsst+δxxit+δxxit. Defining the precision parameters πθ ≡
(
σ2

θ

)−1
, πs ≡

(
σ2

e

)−1
, πx ≡

(
σ2

ε

)−1
,

and πx ≡
(
σ2

v

)−1, the coefficients βs, βx and δs, δx, δx are

βs =
πs

πθ + πs + πx
, βx =

πx

πθ + πs + πx
, (29)

δs =
πs

πθ + πs + πx + πx
, δx =

πx

πθ + πs + πx + πx
, δx =

πx

πθ + πs + πx + πx
. (30)

I use (5) and (20) to substitute for pit and dit in the optimality conditions (25) and (26),

and then I use (1)-(4) to substitute for pit, cit, pt and ct. Finally, I use εit = xit − θit and

vit = xit − θit, and I substitute for E [θt|st, xit] and E [θt|st, xit, xit]. After these substitutions,

(25) and (26) give two linear equations in at−1, st, xit, xit. Matching the coefficients term by

term and rearranging gives me the following set of equations.

(γ + η)ψ0 = −(κp + κp + ηκd), (31)
(γ + η)ψa = (1 + η)ρ, (32)

rt = γκc − (φa + γψa) (1− ρ) at−1, (33)

(1 + ησ)φs = η (ψs + σφs + (ψx + ψx + σφx)βs − (ψx + σφx)χβs) + (φa + γψa)βs, (34)
(1 + ησ)φx = η ((ψx + ψx + σφx) βx + (ψx + σφx) χ (1− βx)− 1) + (φa + γψa) βx − 1, (35)

φs + γψs = (φa + γψa) δs, (36)
γψx = (φa + γψa) δx, (37)

φx + γψx = (φa + γψa) δx. (38)

Notice that ψa is given immediately by (32) and is independent of all other parameters.

Next, notice that to ensure that (33) holds in equilibrium for any choice of ξp ∈ R, the following
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conditions need to be satisfied

µa = φa, (39)

µθ = φs + φx, (40)

µe = φs, (41)

ξ0 = γκc, (42)

ξa = − (φa + γψa) (1− ρ) , (43)

8.2.4 Constructing the linear equilibrium for given µa

To simplify notation, I define

µ̃ ≡ µa + γψa,

and derive the values of the remaining parameters in {φ, ψ} as a function of µ̃. Substituting

φa with µa (from (39)) in (35), (37) and (38) and rearranging, yields

φx =

(
βx + ηγ−1 (δxβx + δx (βx + χ (1− βx)))

)
µ̃− 1− η

1 + ησ − η (σ − γ−1) (βx + χ (1− βx))
, (44)

ψx = γ−1δxµ̃, (45)

ψx = γ−1 (δxµ̃− φx) . (46)

Note that a solution for φx always exists since 1+ησ−η
(
σ − γ−1

)
(βx + χ (1− βx)) > 0. This

inequality follows from βx ∈ [0, 1] and χ ∈ [0, 1]. Next, combining (34) and (36), and using

(44)-(46), yields

φs =

(
βs + ηγ−1δs + ηγ−1 (δx + δx (1− χ))βs

)
µ̃ + η

(
σ − γ−1

)
(1− χ) φxβs

1 + ηγ−1
,

ψs = γ−1 (δsµ̃− φs) . (47)

Substituting the values of ψs, ψx, ψx and φx thus obtained in (21), (22), (27), gives the equi-

librium values of κp, κd and κp. Substituting these values in (31), shows that ψ0 takes the

form

ψ0 = J (ψs, ψx, ψx, φx) +
log (1 + τ)

γ + η
, (48)

where J is a known quadratic function of ψs, ψx, ψx and φx. To find the remaining parameters

of the monetary policy rule, use (40)-(43).
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Next, I check that the market for state-contingent claims clears and that Bit is constant

and equal to 0. Let f (εit, vit, θt, et) denote the joint density of the shocks εit, vit, θt, and et.

Recall that ωit ≡ (εit, vit, θt, et) and let the prices of state-contingent claims at (t, 0) be

Q(ωit) = R−1
t f (εit, vit, θt, et) g (θt) , (49)

where g (.) is a function to be determined. Suppose Bit = 0. Let the portfolio of state-

contingent claims be the same for each household and equal to

Zit+1 (ωit) = Rt

[
P itCit − (1 + τ) YitPit + Tt

]
.

For each realization of the aggregate shocks θt and et, goods markets clearing and the govern-

ment budget balance condition imply that
∫ ∞

−∞

∫ ∞

−∞
Zit+1 ({ε, v, θt, et}) f (ε, v, θt, et) dε dv = Rt

∫ 1

0

(
PitYit − P itCit

)
di = 0.

This implies that the market for state-contingent claims clears for each aggregate state θt. It

also implies that the portfolio {Zit+1 (ωit)} has zero value at date (t, 0) given that
∫

R4

Q (ωit) Zit+1 (ωit) dωit =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Zit+1 ({ε, v, θ, e}) f (ε, v, θ, e) g (θ) dε dv dθ de = 0.

Substituting in the household budget constraint shows that Bit+1 = 0. Let me check that the

portfolio just described is optimal. The first-order conditions for Zit+1 (ωit) and Bit+1 (ωit)

are, respectively,

λ (ωit) = RtQ (ωit)
∫

R4

λ (ω̃it) dω̃it,

λ (ωit) =
∂V (0, at, Rt+1)

∂Bit+1
f (ωit) ,

where λ (ωit) is the Lagrange multiplier on the budget constraint. Combining them and sub-

stituting for ∂V/∂Bit+1, using the envelope condition

∂V (0, at, Rt+1)
∂Bit+1

= E
[
P
−1
it+1C

−γ
it+1|at

]
,

yields

E
[
P
−1
it+1C

−γ
it+1|at

]
f (ωit) = RtQ (ωit)

∫ ∞

−∞
E

[
P
−1
it+1C

−γ
it+1|ρat−1 + θ̃

]
f(θ̃)dθ̃.

Substituting (1), (2), and (49), and eliminating the constant factors on both sides, this becomes

e−(φa+γψa)(ρat−1+θt) = g (θt)
∫ ∞

−∞
e−(φa+γψa)(ρat−1+θ̃)f(θ̃)dθ̃,
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which is satisfied as long as the function g (.) is given by

g (θt) ≡ exp
{
− (φa + γψa) θt − 1

2
(φa + γψa)

2 σ2
θ

}
.

Finally, to complete the equilibrium construction, I need to check that φx 6= 0. From (44),

this requires µa 6= µ0
a where

µ0
a ≡

1 + η

βx + ηγ−1 (δxβx + δx (βx + χ (1− βx)))
− ργ

1 + η

γ + η
.

Notice that when µa = µ0
a a stationary linear equilibrium fails to exists. A stationary equilib-

rium with φx = 0 can arise, but under a policy µa typically different from µ0
a. If φx = 0 all

the derivations above go through, except that E [θt|st, xit, φxxit] = βsst + βxxit. Therefore, it

is possible to derive the analogous of condition (44) and show that φx = 0 iff
(
1 + ηγ−1βx

)
βxµ̃− 1− η

1 + ησ − η (σ − γ−1) (βx + χ (1− βx))
= 0.

This shows that an equilibrium with φx = 0 arises when µa = µ̂a, where

µ̂a ≡ 1 + η

βx (1 + ηγ−1βx)
− ργ

1 + η

γ + η
.

However, µ̂a is also consistent with an equilibrium with φx 6= 0. Summing up, if µa = µ0
a there

is no stationary linear equilibrium; if µa = µa
a there are two stationary linear equilibria, one

with φx 6= 0 and one with φx = 0; if µa ∈ R/
{
µ0

a, µ̂a

}
, there is a unique stationary linear

equilibrium.

8.3 Proof of Proposition 2

If σ2
e = 0 then βs = δs = 1 and βx = δx = δx = 0. Substituting in (44)-(47) gives

φx = − 1 + η

1 + ησ − η (σ − γ−1) χ
,

φs = µ̃ +
η

(
σ − γ−1

)
(1− χ)

1 + ηγ−1
φx,

and

ψx = 0, ψx = −γ−1φx,

ψs = γ−1 (µ̃− φs) = −γ−1 η
(
σ − γ−1

)
(1− χ)

1 + ηγ−1
φx,

and ψ0 can be determined from (48). Notice that φs is the only coefficient which depends on

µa (through µ̃). However, the equilibrium allocation only depends on the consumption levels

cit and on the relative prices pit − pt, which are independent of φs.
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8.4 Proof of Proposition 3

For the following derivations recall that under imperfect information all the coefficients βs, βx, δs, δx, δx

are in (0, 1) and χ ∈ [0, 1]. Differentiating (44) with respect to µa (recalling that µ̃ = µa + γψa

and ψa is constant), gives

∂φx

∂µa
=

βx + ηγ−1 (δxβx + δx (βx + χ (1− βx)))
1 + ησ − η (σ − γ−1) (βx + χ (1− βx))

> 0,

where the denominator is positive since βx + χ (1− βx) < 1 and η
(
σ − γ−1

)
< ησ. Differenti-

ating (??) gives

∂φs

∂µa
=

βs + ηγ−1δs

1 + ηγ−1
+

[
ηγ−1 (δx + δx (1− χ))βs

1 + ηγ−1
+

ηβs

(
σ − γ−1

)
(1− χ)

1 + ηγ−1

∂φx

∂µa

]
.

Some lengthy algebra, in the supplementary material, shows that the term in square brackets

is positive, so ∂φs/∂µa > 0. Next, differentiating (47) gives

∂ψs

∂µa
= γ−1

(
δs − ∂φs

∂µa

)
.

To prove that this expression is negative notice that

∂φs

∂µa
>

βs + ηγ−1δs

1 + ηγ−1
> δs,

where the last inequality follows from βs > δs, which follows immediately from (29) and (30).

To prove that ∂ψθ/∂µa > 0 it is sufficient to use of the last result together with Lemma 2,

which immediately implies that ∂ψθ/∂µa = − (
σ2

e/σ2
θ

)
∂ψs/∂µa.

8.5 Proof of Proposition 4

The argument in the text shows that there is a µa that gives coefficients ψs = 0 and ψθ =

(1 + η)/(γ + η), if one assumes that consumers form expectations based on at−1, st, xit, and

xit. It remains to check that this value of µa is not equal to µ0
a, so that φx 6= 0 and observed

prices reveal xit. The algebra is presented in the supplementary material.

8.6 Proof of Lemma 3

Let me consider the case γ 6= 1, the proof for the case γ = 1 follows similar steps and

is presented in the supplementary material. First, I derive expressions for the conditional

expectations E[C1−γ
it |at−1] and E[N1+η

it |at−1]. Substituting for cit in the first, using (2), I

obtain

E
[
C1−γ

it |at−1

]
= e(1−γ)(ψ0+ψaat−1)+ 1

2
(1−γ)2(ψ2

θσ2
θ+ψ2

sσ2
e+ψ2

xσ2
ε +ψ2

xσ2
v).
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Using (20) to substitute for dit, and the fact that ait = at + εit and pit − pt = φxεit, I derive

the equilibrium labor supply

Nit =
DitP

−σ
it

Ait
= eκd+ψ0+ψaat−1+ψθθt+ψset−at−(1+σφx−(ψx+σφx)χ)εit . (50)

From this expression, I obtain

E
[
N1+η

it |at−1

]
= e(1+η)(κd+ψ0+(ψa−ρ)at−1)+ 1

2
(1+η)2((ψθ−1)2σ2

θ+ψ2
sσ2

e+(1+σφx−(ψx+σφx)χ)2σ2
ε ).

Using the fact that ψa = ρ (1 + η) / (γ + η) to group the terms in at−1, the instantaneous

conditional expected utility takes the form

E [U (Cit, Nit) |at−1] =
[

1
1− γ

e(1−γ)(k1+ψ0) − 1
1 + η

e(1+η)(k2+ψ0)

]
e(1−γ)ψaat−1 . (51)

where

k1 =
1
2

(1− γ)
(
ψ2

θσ
2
θ + ψ2

sσ
2
e + ψ2

xσ2
ε + ψ2

xσ2
v

)
, (52)

k2 = κd +
1
2

(1 + η)
(
(ψθ − 1)2 σ2

θ + ψ2
sσ

2
e + (1 + σφx − (ψx + σφx) χ)2 σ2

ε

)
. (53)

The equilibrium equation (48) shows that, for each value of µa, there is a one-to-one corre-

spondence between τ and ψ0, and ψ0 is the only equilibrium coefficient affected by τ . There-

fore, if τ is set optimally, ψ0 must maximize the term in square brackets on the right-hand

side of (51). Solving this problem shows that the term in square brackets must be equal to

exp{(((1− γ) (1 + η))/(γ + η))(k1 − k2)} and

ψ0 =
(1− γ) k1 − (1 + η) k2

γ + η
. (54)

Then, I can take the unconditional expectation of (51) and sum across periods to obtain

∞∑

t=0

βtE [U (Cit, Nit)] =
γ + η

(1 + η) (1− γ)
e

(1−γ)(1+η)
γ+η

(k1−k2)
∞∑

t=0

βtE
[
e

(1−γ)(1+η)
γ+η

ρat−1

]
.

Letting

w ≡ k1 − k2, (55)

and

W0 ≡ γ + η

1 + η

∞∑

t=0

βtE
[
e

(1−γ)(1+η)
γ+η

ρat−1

]
,
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I then obtain the expression in the text. Combining (52), (53), and (55), shows that w can be

expressed as follows

w =
1
2

(1− γ)(1 + η)
γ + η

σ2
θ −

1
2

(γ + η)

((
ψθ − 1 + η

γ + η

)2

σ2
θ + ψ2

sσ
2
e

)
+

+
1
2

(1− γ)
(
ψ2

xσ2
ε + ψ2

xσ2
v

)− 1
2

(1 + η) (1 + σφx − (ψx + σφx) χ)2 σ2
ε ,

−1
2

(
ψ2

xσ2
ε + (ψx + σφx)2 σ2

v|ε
)

+
1
2
σ (σ − 1)φ2

xσ2
ε|v. (56)

This shows that w is a quadratic functions of the equilibrium coefficients φ and ψ. Moreover,

Proposition 3 shows that φ and ψ are linear functions of µa. Therefore, (56) implicitly defines w

as a quadratic function of µa. The discounted sum in W0 is always finite if ρ < 1, because each

term is bounded by
∣∣exp{(1− γ)ψaρa−1 + (1/2)((1− γ)2/(1− ρ2))ψ2

aσ
2
θ}

∣∣. If, instead, ρ = 1,

to ensure that the sum is finite it is necessary to assume that β exp
{
(1/2)(1− γ)2ψ2

aσ
2
θ

}
< 1,

which is equivalent to the inequality in footnote 6.

8.7 Derivation of equations (17) and (18)

I will first show that (17) corresponds to (56) in the proof of Lemma 3. For ease of exposition,

the expression in the text omits the constant term −(1/2)((1− γ)(1 + η)/(γ + η))σ2
θ . The first

two terms in (17) can be derived from the two terms after the constant in (56), simply using

the definitions of ct and cit. Equation (50), can be used to derive
∫ 1
0 (nit − nt)

2 di, and check

that the third term in (17) equals the third term after the constant in (56). Finally, the last

line of (56) corresponds to −κd, by (22), while equation (50) implies that nt = κd + ct − at.

This shows that the last terms in (17) and (56) are equal. To derive (18) notice that, as just

argued, the last line of (56) is equal to −κd. The derivations in Lemma 5 can then be used to

obtain the expression in the text.

8.8 Proof of Lemma 4

I concentrate on the case γ 6= 1, the case γ = 1 is proved along similar lines. Given two

monetary policies µ′a = µa and µ′′a = µa + u, let C ′
it, N

′
it and C ′′

it, N
′′
it denote the associated

equilibrium allocations, and define the function

f (δ, u) ≡
{ ∞∑

t=0

βtE
[
e

(1−γ)(1+η)
γ+η

ρat−1

]}−1 { ∞∑

t=0

βtE
[
U

(
eδC ′

it, N
′
it

)]
−

∞∑

t=0

βtE
[
U

(
C ′′

it, N
′′
it

)]
}

.

Proceeding in as in the proof of Lemma 3, it is possible to show that

f (δ, u) =
1

1− γ
e(1−γ)(δ+k1+ψ0) − 1

1 + η
e(1+η)(k2+ψ0) − γ + η

(1 + η) (1− γ)
e

(1+η)(1−γ)
γ+η

w(µa+u)
,
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where k1 and k2 are defined in (52) and (53), for the coefficients {φ, ψ} associated to the policy

µa, and the function w (.) is defined by (56). Let the function δ (u) be defined implicitly by

f (δ (u) , u) = 0. It is immediate that δ (0) = 0. Moreover,

∂f (δ, u)
∂δ

∣∣∣∣
δ=u=0

= e(1−γ)(k1+ψ0),

∂f (δ, u)
∂u

∣∣∣∣
δ=u=0

= −e
(1+η)(1−γ)

γ+η
w(µa)

w′ (µa) ,

and (54) implies that

e(1−γ)(k1+ψ0) = −e
(1+η)(1−γ)

γ+η
w(µa)

.

It follows that δ′ (u) = w′ (µa) . Since ∆ (µa, µa + u) = exp {δ (u)}− 1, by definition, the result

follows from differentiating this expression at u = 0.

8.9 Proof of Proposition 5

Let me begin by setting up and characterizing the planner’s problem. Then, I will show that

there is a monetary policy that reaches the constrained optimal allocation. Let a− be a given

scalar representing productivity in the previous period. Let θ be a normally distributed random

variable with mean zero and variance σ2
θ and let s be a random variable given by s = θ + e,

where e is also a normal random variable with mean zero and variance σ2
e . Let x, x and x̃ be

random variables given by x = θ+ε, x = θ+v, and x̃ = x+ ε̃, where ε, v and ε̃ are independent

random variables with zero mean and variances σ2
ε , σ

2
v , σ

2
ε|v. The planner’s problem is to choose

functions C̃ (s, x, x, x̃), C (s, x, x), and N (s, x, θ) that maximize

E [U (C (s, x, x) , N (s, x, θ))]

subject to

C (s, x, x) =
(
E

[(
C̃ (s, x, x, x̃)

)σ−1
σ |s, x, x

]) σ
σ−1

for all s, x, x, (57)

eρa−+x̃N (s, x̃, θ) = E
[
C̃ (s, x, x, x̃) |s, x̃, θ

]
for all s, x̃, θ. (58)

Let Λ (s, x̃, θ) denote the Lagrange multiplier on constraint (58). Substituting (57) in the

objective function, one obtains the following first-order conditions with respect to C̃ (s, x, x, x̃)

and N (s, x̃, θ):

(
C̃ (s, x, x, x̃)

)− 1
σ (C (s, x, x))

1
σ
−γ = E [Λ (s, x̃, θ) |s, x, x, x̃] , (59)

(N (s, x̃, θ))η = eρa−+x̃Λ (s, x̃, θ) . (60)
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The planner’s problem is concave, so (59) and (60) are both necessary and sufficient for an

optimum. To prove the proposition, I take the equilibrium allocation associated to a generic

pair (µa, τ), and I derive conditions on µa and τ which ensure that it satisfies (59) and (60).

An equilibrium allocation immediately satisfies the constraints (57) and (58), the first by

construction, the second by market clearing. Take a linear equilibrium allocation characterized

by ϕ and ψ. Let C̃ (., ., ., .) and N (., ., .) take the form

C̃ (s, x, x, x̃) = exp {σκp + ψ0 + ψaa− + ψss + ψxx + ψxx− σφx (x̃− x)} , (61)

N (s, x̃, θ) = exp {κd + ψ0 + ψaa− + ψss + (ψx + ψx) θ − ρa− − x̃− (σφx − (ψx + σφx) χ) (x̃− θ)}

I conjecture that the Lagrange multiplier Λ (s, x̃, θ) takes the log-linear form

Λ (s, x̃, θ) = exp {λ0 + λss + λxx̃ + λθθ} . (62)

Let me first check the first-order condition for consumption, (59). Substituting (61) in (57)

and using the definition of κp, I get

C (s, x, x) = exp {ψ0 + ψaa− + ψss + ψxx + ψxx} .

After some simplifications, the left-hand side of (59) becomes

C̃ (s, x, x, x̃)−
1
σ C (s, x, x)

1
σ
−γ = exp {−κp + φx (x̃− x)} exp {−γ (ψ0 + ψaa− + ψss + ψxx + ψxx)} .

The right-hand side of (59), using (62), is equal to

E [Λ (s, x̃, θ) |s, x, x, x̃] = exp
{

λ0 + λss + λxx̃ + λθE [θ|s, x, x] +
1
2
λ2

θσ̂
2
θ

}
,

where σ̂2
θ is the residual variance of θ, equal to (πθ + πs + πx + πx)−1. Therefore, to ensure

that (59) holds for all s, x, x, x̃, the following conditions must hold,

λ0 +
1
2
λ2

θσ̂
2
θ = −κp − γ (ψ0 + ψaa−) ,

λs + λθδs = −γψs,

λx = φx,

λθδx = −γψx,

λθδx = −γψx − φx.

Set λθ = − (φa + γψa) , λs = φs, λx = φx and λ0 = −κp − γ (ψ0 + ψaa−) − (1/2)λ2
θσ̂

2
θ . Then,

the first and the third of these conditions hold immediately. The other three follow from the
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equilibrium relations (36)-(38). Let me now check the first order condition for labor effort,

(60). Substituting (62) and matching the coefficients on both sides, gives

λ0 + ρa− = η (κd + ψ0 + (ψa − ρ) a−) ,

λs = ηψs,

λx + 1 = −η (1 + σφx − (ψx + σφx)χ) ,

λθ = η (ψx + ψx + σφx − (ψx + σφx)χ) .

Substituting, the λ’s derived above, using ψa = ρ (1 + η) / (γ + η) and rearranging, gives

(γ + η) ψ0 + ηκd + κp + (1/2) (φa + γψa)
2 σ̂2

θ = 0, (63)

φs − ηψs = 0, (64)

(1 + ησ) φx + 1 + η − η (ψx + σφx)χ = 0, (65)

φa + γψa + η (ψx + ψx + σφx − (ψx + σφx) χ) = 0. (66)

To complete the proof, I need to find µa and τ such that the corresponding equilibrium coef-

ficients ϕ and ψ satisfy (63)-(66). With the notation µ̃ = µa + γψa, setting µ̃ equal to

µ̃∗ ≡ η
(
σ − γ−1

)
(1− χ) (1 + η)

(1 + ηγ−1 (δx + δx (1− χ))) (1 + ησ − η (σ − γ−1) χ) + η2 (σ − γ−1) (1− χ) γ−1δxχ
,

(67)

ensures that (64)-(66) are satisfied. To see why these three conditions can be jointly satisfied,

notice that the equilibrium conditions (34) and (35) can be rewritten as

φs − ηψs = [η ((ψx + ψx + σφx)− (ψx + σφx) χ) + φa + γψa] βs,

(1 + ησ) φx + 1 + η − η (ψx + σφx) χ = [η ((ψx + ψx + σφx)− (ψx + σφx) χ) + φa + γψa] βx,

so that, in equilibrium, (66) implies the other two. Finally, the subsidy τ can be set so as to

ensure that (63) is satisfied. The value of φx at the optimal monetary policy is

φ∗x =
−1− η + ηγ−1δxχµ̃∗

1 + ησ − η (σ − γ−1)χ
. (68)

Substituting (67) in the expression ηγ−1δxχµ̃∗, shows that this expression is strictly smaller

than 1 + η, which implies that φ∗x < 0. This shows that µ∗a 6= µ0
a, so that, by Proposition 1,

the associated coefficients ϕ∗ and ψ∗ form a linear equilibrium.
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8.10 Proof of Proposition 6

Let me derive the value of ψs at the constrained efficient allocation. From condition (64) and

the equilibrium condition φs + γψs = µ̃δs, I get

ψ∗s =
1

γ + η
δsµ̃

∗.

If χ = 0, the consumer extracts perfect information from xit = θt and δs = 0, which implies

that ψ∗s = 0. If, instead χ > 0, ψ∗s inherits the sign of µ̃∗. Inspecting (67) shows that if

η > 0, χ < 1 and σγ 6= 1, µ̃∗ is not zero and has the sign of σγ − 1. In all other cases,

µ̃∗ = 0. Therefore, if η > 0, χ ∈ (0, 1) and σγ 6= 1, ψ∗s is not zero and has the sign of σγ − 1.

In all remaining cases ψ∗s = 0. The inequalities for ψ∗θ follow from Lemma 2. To prove the

inequalities for µ∗a, notice that, by Proposition 3 there is a decreasing relation between µa and

ψs, and ψs = 0 at µa = µfs
a .

8.11 Proof of Proposition 7

The first part of the Proposition is proved by the two examples discussed in the text. Let me

prove the second part. By Proposition 5, social welfare under the optimal monetary policy

is the value of a single decision maker’s optimization problem (the planner’s). For a single

decision maker, increasing the variance σ2
e is equivalent to observing the signal st + ζt instead

of st, where ζt is an additional independent error with variance σ2
ζ equal to the increase in σ2

e .

That is, a decision maker who observes st can always replicate the payoff of a decision maker

with a less precise signal, by adding random noise to st and following the associated optimal

policy. Therefore, the decision maker’s payoff cannot increase when σ2
e increases.
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